Dietrich-Bonhoeffer-Gymnasium Oberasbach

Schulinterner Grundwissen-Test Mathematik in Jgst. 9

Schuljahr 2016/2017 LÖSUNG Gruppe A

Aufgabe 1

a)
$$a \cdot (-5a) - (-a^2) + 4a - 2a(-2) =$$

= $-5a^2 + a^2 + 4a + 4a =$
= $-4a^2 + 8a$

b)
$$2(3x-1)(x+2) =$$

= $2(3x^2+6x-x-2) =$
= $2(3x^2+5x-2) =$
= $6x^2+10x-4$

c)
$$4ab^{-3} \cdot \frac{1}{2} a^{-1} b^{-1} =$$

 $= 4 \cdot a \cdot \frac{1}{b^3} \cdot \frac{1}{2} \cdot \frac{1}{a} \cdot \frac{1}{b} =$
 $= 4 \cdot \frac{1}{2} \cdot a \cdot \frac{1}{a} \cdot \frac{1}{b^3} \cdot \frac{1}{b} =$
 $= 2 \cdot \frac{1}{b^4} \quad (= 2b^{-4})$

d)
$$\frac{x^2 - 3ax}{x - 3a} =$$

$$= \frac{x \cdot (x - 3a)}{1 \cdot (x - 3a)} =$$

$$= \frac{x}{1} = x$$

Aufgabe 2

$$27x^3 - 3xy + 3x =$$

= $3x (9x^2 - y + 1)$

Aufgabe 3

Aufgabe 4

a)
$$f(x) = \frac{2}{3}x - 2.5$$

y-Achsenabschnitt: t = 2,5

Steigung: $m = \frac{2}{3} = \frac{\Delta y}{\Delta x}$

→ "3 nach rechts, 2 nach oben"

b) y-Achse:
$$x = 0$$

 $f(0) = -2.5$ (y-Achsenabschnitt)
 $\rightarrow S_y(0 \mid -2.5)$
x-Achse: $f(x) = 0$
 $\frac{2}{3}x - 2.5 = 0$ $|+2.5$
 $\frac{2}{3}x = 2.5 = \frac{5}{2}$ $|\cdot\frac{3}{2}|$
 $x = \frac{5}{2} \cdot \frac{3}{2} = \frac{15}{4}$ (= 3.75)

$$\rightarrow S_x(\frac{15}{4} \mid 0)$$

c) y = -3x + 2y-Achsenabschnitt: t = 2 (Ablesen!)

Steigung:
$$m = \frac{\Delta y}{\Delta x} = \frac{-3}{1} = -3$$
 (Ablesen!)

Aufgabe 5

x: Anzahl der Minions (mit je $2 \cdot 3 = 6$ Fingern) y: Anzahl der Menschen (mit je $2 \cdot 5 = 10$ Fingern)

- (I) x + y = 20 (Gäste auf der Party)
- (II) 6x + 10y = 152 (Finger insgesamt)

Aufgabe 6

(I)
$$4y - 3x = -2.5$$

(II)
$$5x - 2y = 3 \quad |\cdot 2|$$

(II')
$$10x - 4y = 6$$

(I) + (II'):
$$-3x + 10x = -2.5 + 6$$

$$7x = 3.5$$
 |: 7
 $x = \frac{3.5}{7} \stackrel{(2)}{=} \frac{7}{14} = \frac{1}{2} = 0.5$

in (II):
$$5 \cdot 0.5 - 2y = 3$$

 $2.5 - 2y = 3$ | -2.5
 $-2y = 0.5$ | : (-2)
 $y = -0.25$

$$\rightarrow$$
 L = {(0,5 | -0,25)} [ein Zahlenpaar]

Aufgabe 7

$$\frac{2}{x-4} = \frac{-1}{x+3}$$
 | "Überkreuzmultipliz."

 $\mathbb{D} = \mathbb{Q} \setminus \{-3, 4\}$ [Nenner würde zu 0 werden]

Aufgabe 8

$$\alpha$$
 = ϵ = 55° (Stufenwinkel bzw. F-Winkel) γ ' = γ (Scheitelwinkel)

$$\alpha + \gamma' + \beta = 180^{\circ}$$
 (gestreckter Winkel)

$$\gamma' + \beta = 180^{\circ} - \alpha = 180^{\circ} - 55^{\circ} = 125^{\circ}$$

$$\beta = 4\gamma = 4\gamma'$$
 einsetzen:

$$5y' = 125^{\circ} | : 5$$

$$\gamma' = 125^{\circ} : 5 = 25^{\circ} = \gamma$$

Aufgabe 9

a) Bedingung für Anwendbarkeit des Strahlensatzes: Geraden: BC || DE oder Strecken: [BC] || [DE] [Es muss zwei "Parallelstrecken" geben.]

b)
$$\frac{15}{6} = \frac{x+24}{x}$$
 | "Überkreuzmultipliz."
 $15 \cdot x = (x+24) \cdot 6$
 $15x = 6x + 144$ | $-6x$
 $9x = 144$ | $: 9$

x = 16 [in die 14 geht die 9 einmal, Rest 5...]

Breite des Flusses: x = 16 m

Notenschlüssel:

34 - 28	27 - 23	22 - 18	17 - 13	12 - 6	5 - 0
1	2	3	4	5	6